

FSC-BT2064x 用户指南

Release 2.3

Table of contents

1	硬件	说明												7				2
	1.1	1. 模块	引脚图.									/				<i>.</i> .		2
	1.2	2. 模块	引脚说明) .				3
	1.3	2 硬件证	设计说明										?).					3
	1.616																	
2	功能																	4
	2.1		默认配置						(•		•	4
	2.2	2. GPIC	***				,								•		•	4
		2.2.1	2.1 LED	引脚				.)'										4
		2.2.2	2.2 BT 连	接状态	引脚		1											5
	2.3	3. 工作	模式			.C												5
		2.3.1	3.1 透传	模式 .														5
		2.3.2	3.2 指令	模式 .														5
	2.4	4. GAT	T透传服务	务														5
3	数传	通讯原理																6
	3.1	1. 工作	原理	·														6
	3.2	2. 模块	与单片机	MCU 等	萨设备	连接												7
	3.3	3. 模块	之间的连	接通讯														7
	3.4	4模块	与手机连挂	妾通讯 .														8
	G	3.4.1	4.1 为什	么手机」	上需要	使用。	APP 3	来进行	亍蓝	牙道	接	和通	i讯;	?				8
		3.4.2	4.2 通讯	应用框图	<u>.</u> .													8
4	快速	开发套件	=															10
	4.1	1. 技术	规格书 .															10
	4.2	2. 快速	评估板 .															10
	4.3	3. AT 扌	旨令集															10
	4.4	4. 串口	调试工具															10
	4.5		&SDK															10
	4.6		升级工具															11
					•			•				-	-	-	-	-		

5	快速	测试	12
	5.1	1. 硬件准备	12
	5.2	2. 软件准备	12
	5.3	3. 硬件连接方式	12
	5.4	4. 通讯测试	14
		5.4.1 4.1 AT - 串口通信测试	14
		5.4.2 4.2 AT+NAME - 读/写 BR/EDR 蓝牙名称	14
		5.4.3 4.3 AT+VER - 读取当前固件版本	14
6	应用		15
	6.1	数据透传应用	15
		6.1.1 什么是透传?	15
		6.1.2 模块与手机间透传应用	15
		6.1.3 模块与模块间透传应用	16
	6.2	查询/修改模组默认参数	17
	6.3	发送数据的流程	18
	6.4	模组做主机连接远端设备	19
7	固件	升级	21
	7.1	1. 空中升级	21
		7.1.1 1.1 空中升级工具	21
		7.1.2 1.2 空中升级操作指导	21
		7.1.3 1.3 空中升级操作图示	22
	7.2	2. 升级常见问题 , . ,	23
8	常见i	问题汇总	24
	8.1	1. 为什么手机上需要使用 APP 来进行蓝牙连接和通讯?	24
	8.2	2. iOS 手机如何获取蓝牙 MAC 地址?	24
9	附录		26

本指南适用于 FSC-BT2064x 系列蓝牙双模数传应用模块,具体模块型号包含:

• FSC-BT2064FI

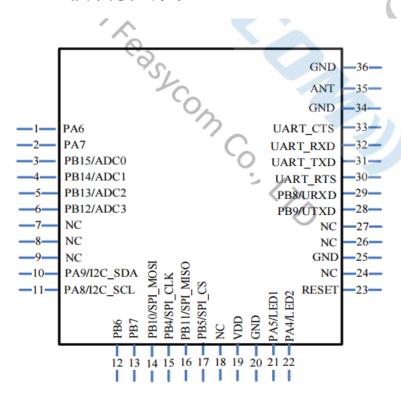

本指南详细介绍了 FSC-BT2064x 系列模块的硬件说明、功能说明、数传通讯原理、快速开发套件、快速测试、典型应用开发示例、以及固件升级方法和 FAQs,由以下章节组成:

Table of contents

硬件说明

1.1 1. 模块引脚图

FSC-BT2064FI PIN Diagram (Top View)

1.2 2. 模块引脚说明

Pin	Pin Name	Type	Pin Descriptions
31	UART_TXD	О	串口数据脚
32	UART_RXD	I	串口数据脚
33	UART_CTS	I	串口流控脚
30	UART_RTS	O	串口流控脚
23	RESET	I	低电平复位
19	VDD	Power	3.3V 供电,建议使用 LDO 供电
29	URXD	I	烧录脚,程序下载 RXD
28	UTXD	O	烧录脚,程序下载 TXD
21	PA5/LED1	0	复用: LED; 上电: 灯光慢闪; 已连接: 灯光常亮
22	PA4/LED2	O	复用:连接状态指示;未连接:低电平;已连接:高电平
35	ANT	ANT	改变天线附近的0欧电阻,可以外接蓝牙天线

1.3 2 硬件设计说明

- 模组只需要连接 VDD/GND/UART_RXD/UART_TXD 即可使用
- 如果 MCU 需要获取蓝牙模组的连接状态,需要接 STATUS 引脚
- 画完原理图后请发给飞易通进行审核,避免蓝牙距离达不到最佳效果

功能说明

2.1 1. 模块默认配置

通用双模数传应用固件程序默认配置:

Name	FSC-BT2064
LE-Name	FSC-BT2064-LE
Pin Code	0000
Secure Simple Pairing Mode	Off
Service UUID	FFF0
Write UUID	FFF2
Notify UUID	FFF1
UART Baudrate	115200/8/N/1

2.2 2. GPIO 指示

2.2.1 2.1 LED 引脚

PIN	状态	描述
PIN21	灯光慢闪	上电&蓝牙未连接
PIN21	常亮	蓝牙已连接

2.2.2 2.2 BT 连接状态引脚

PIN	状态	描述
PIN22	低电平	蓝牙未连接
PIN22	高电平	蓝牙已连接

2.3 3. 工作模式

2.3.1 3.1 透传模式

- 蓝牙未连接, 串口收到的数据按照 AT 指令进行解析;
- 蓝牙连接后, 串口收到的数据全部原样发送到远端蓝牙。

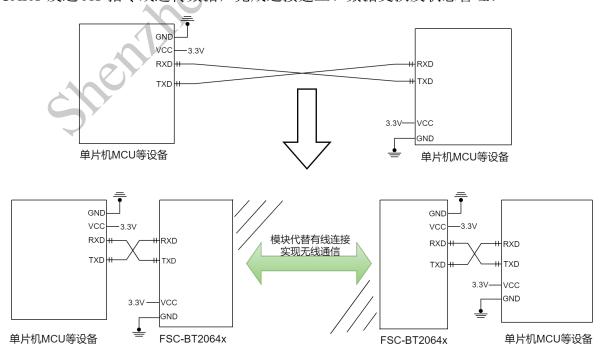
2.3.2 3.2 指令模式

- 蓝牙未连接, 串口收到的数据按照 AT 指令进行解析;
- **蓝牙连接后**,串口收到的数据仍然按照 AT 指令进行解析,需要通过 AT 指令发送数据给远端,如 AT+SPPSEND。

2.4 4. GATT 透传服务

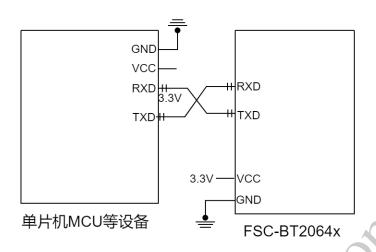
类型	UUID	权限		描述
Service	0xFFF0			透传服务
Write	0xFFF2	Write,	Write Without Response	APP 发给模组
Notify	0xFFF1	Notify		模组发给 APP

2.3. 3. 工作模式 5


数传通讯原理

3.1 1. 工作原理

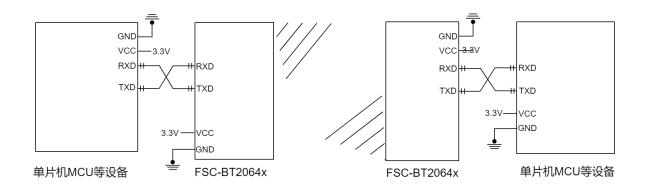
FSC-BT2064x 系列蓝牙双模数据模块基于 SPP(串口端口协议)和 BLE(蓝牙低能耗) 双模协议实现设备间无线通信。


- **SPP 模式**:模拟传统串口通信,通过射频层建立虚拟串行链路,支持持续大数据传输(如文件传输),适用于打印机等场景。
- BLE 模式:采用事件驱动的低功耗架构,通过 GATT 协议定义"服务-特征值"模型,实现间歇性小数据交互(如传感器数据),适用于物联网设备。

两者共用底层射频硬件,通过协议栈自动切换,模块与主机设备(手机/MCU)间通过 UART 发送 AT 指令或透传数据,完成连接建立、数据交换及状态管理。

如图所示,蓝牙模块用于代替全双工通信时的物理连线。单片机 MCU 等设备(左)通过 TXD 给到蓝牙模块(左),蓝牙模块的 RXD 端口收到串口数据后,自动将数据以无线电波的方式经空中发送到远端蓝牙模块,远端蓝牙模块(右)接收到空中数据,并经TXD 给到本地单片机 MCU 等设备(右)。

3.2 2. 模块与单片机 MCU 等设备连接

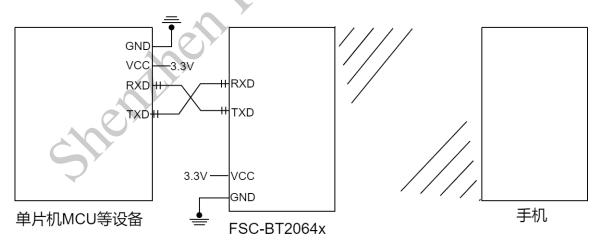


该图示展示了一个主控 MCU (微控制单元)和一个 FSC-BT2064x 蓝牙模块连接示意图,通过串口交叉互联实现主控与蓝牙模块的指令交互,支持无线通信功能,适用于物联网设备、远程控制等场景。

- 1. **串口通信接口**:主 MCU 的发送端(MCU_TX)与蓝牙模块的接收端(UART_RX) 交叉连接,接收端(MCU_RX)同理连接至蓝牙模块的发送端(UART_TX),构成双向数据传输通道;
- 2. **电源与接地**:蓝牙模块通过 VDD_3V3 引脚接入 3.3V,并与主 MCU 共地(GND),确保电平兼容性及信号稳定性。

3.3 3. 模块之间的连接通讯

两个蓝牙模块 FSC-BT9101AI, 上电即可进行蓝牙连接。


模块可以作为主设备去连接从设备,主机可以发送指令控制模块进行蓝牙扫描、建立链接、数据传输和链接断开。

3.4 4 模块与手机连接通讯

3.4.1 4.1 为什么手机上需要使用 APP 来进行蓝牙连接和通讯?

手机原生蓝牙功能仅支持通用场景,如音频传输、文件传输,部分蓝牙外围设备能通过 手机内置的设置程序连接上,如蓝牙外放器,蓝牙耳机,蓝牙键盘,蓝牙鼠标等,当蓝 牙外围设备无法被手机原生设置程序连接,例如蓝牙模块仅支持 SPP/GATT 协议,为 了连接这种模块,一般需要手机安装特定的手机应用,例如 FeasyBlue 应用。

3.4.2 4.2 通讯应用框图

蓝牙模块端 (FSC-BT2064x): 上电会持续向外发送广播数据;

手机端:可通过搜索获取到广播包,并向模块端(FSC-BT2064x)发起连接请求。连接成功后,蓝牙模块(FSC-BT2064x)会拉高连接状态脚和响应指示指令(指令模式下有效)通知主机端蓝牙连接成功;

主机端:可通过串口经蓝牙模块将数据发送给远端(手机端)蓝牙,远端(手机端)蓝 牙也可以把数据发送给主机。

快速开发套件

4.1 1. 技术规格书

• FSC-BT2064FI 技术规格书

4.2 2. 快速评估板

• FSC-DB005: 飞易通 USB to TTL 数传应用开发板;

4.3 3. AT 指令集

• FSC-BT2064FI 通用数传应用命令集:适用于 FSC-BT2064FI 通用双模数传应用 固件程序;

4.4 4. 串口调试工具

• 飞易通串口调试助手: 基于 Windows 系统 PC 端的串口调试工具;

4.5 5. App&SDK

• FeasyBlue:支持 Android 和 iOS 平台的飞易通 App&SDK 资源,可支持 蓝牙 BLE、SPP 数据通讯调试、和 飞易通模块固件版本读取、固件空中升级、参数配置等;

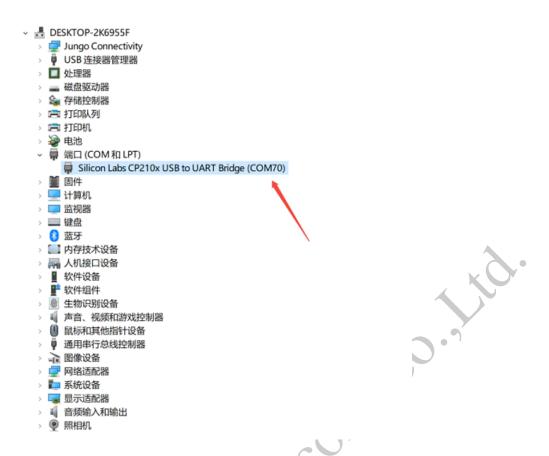
4.6 6. 固件升级工具

- 空中升级
 - 工具: FeasyBlue
 - 空中升级指南:参考 **固件升级** 空中升级内容章节

Shenihen Feasyconn Co. Italian Shenihen Feasyconn

快速测试

5.1 1. 硬件准备


- 1 x FSC-DB005-BT2064x(FSC-DB005 USB to TTL 评估板与 FSC-BT2064x 模块已连接 VDD/GND/UART_RXD/UART_TXD)
- 1 x 电脑(Windows / Mac)
- 1 x 手机(Android / iOS)

5.2 2. 软件准备

- 飞易通串口调试助手: PC 端调试软件
- 飞易通 FeasyBlue App: 移动端调试应用
- 通讯接口: UART
- 串口配置: 115200/8/N/1

5.3 3. 硬件连接方式

1. 将 FSC-DB005-BT2064x 通过 USB 接入 PC 端, PC 端自动识别串口并生成虚拟 COM □。

2. PC 端运行飞易通串口助手,设置正确的 串口号和波特率,并勾选发送新行。

5.4 4. 通讯测试

如下列示几个基础通用 AT 指令测试示例,更多指令可参考配套适用 FSC-BT2064FI 通 用数传应用命令集。

5.4.1 4.1 AT - 串口通信测试

Command	AT\r\n	
Response	\r\nOK\r\n	
Description	当上电或更改波特率时,	测试主机和模块之间的 UART 通讯

Example:

<< AT\r\n

>> \r\nOK\r\n //串口收到 OK 事件响应,说明串口通讯已连接成功

5.4.2 4.2 AT+NAME - 读/写 BR/EDR 蓝牙名称

Example: 读取 BR/EDR 蓝牙名称

<< AT+NAME\r\n

>> \r\n+NAME=FSC-BT2064-XXXX\r\n //通用固件默认开启后缀, 一般为 MAC 地址后 4 位

>> \r\nOK\r\n

5.4.3 4.3 AT+VER - 读取当前固件版本

Example: 读取当前固件版本

<< AT+VER\r\n

 $>> \rn+VER=1.0.0, FSC-BT2064\rn$

>> \r\nOK\r\n

5.4. 4. 通讯测试 14

应用开发示例

6.1 数据透传应用

6.1.1 什么是透传?

FSC-BT2064x 蓝牙双模数传模块,工作模式包含两种数据传输模式:透传模式和指令模式。

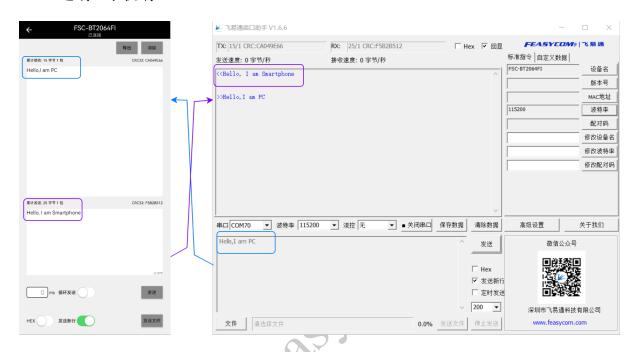
FSC-BT2064x 系列通用数传固件一般默认数据透传模式,如需切换,可参考 FSC-BT2064x AT 命令集 使用 **AT+TPMODE** 指令来进行切换。两种数据传输模式工作机制与区别如下:

• 诱传模式:

蓝牙未连接,串口收到的数据按照 AT 指令进行解析;

蓝牙连接后,串口收到的数据全部原样发送到远端蓝牙,不会包含任何数据包头和包围,不需要通过 AT 指令来发送数据。

• 指令模式:


蓝牙未连接, 串口收到的数据按照 AT 指令进行解析;

蓝牙连接后,串口收到的数据仍然按照 AT 指令进行解析,会包含特定响应指示数据包 头和包围,需要通过 AT 指令发送数据给远端,如 AT+LESEND。

6.1.2 模块与手机间透传应用

1. 模块端: 上电后, 模块会持续发送广播包数据;

- 2. 手机端: 打开 FeasyBlue APP, 扫描附近的蓝牙设备广播包, 找到目标蓝牙模块, 并建立连接;
- 3. 连接成功后,模块端状态引脚将拉高电平,说明已连接;
- 4. 连接成功后,在透传模式下,模块端收到串口数据后,会自动透传经空中发送到 远端(手机端)

6.1.3 模块与模块间透传应用

FSC-BT2064x 与 FSC-BT9101AI 蓝牙模块间 SPP 通讯数据透传演示,如下:

1. 扫描附近的 SPP 设备

FSC-BT2064x 扫描附近的蓝牙 SPP 设备,操作如下:

2. 发送建立 SPP 连接请求

6.1. 数据透传应用 16

FSC-BT2064x 通过 AT+SPPCONN 指令与 FSC-BT9101AI 建立 SPP 协议连接,操作如下:

发送: <<AT+SPPCONN=DC0D3000044F //向远端 FSC-BT9101AI 发起 SPP 链

接

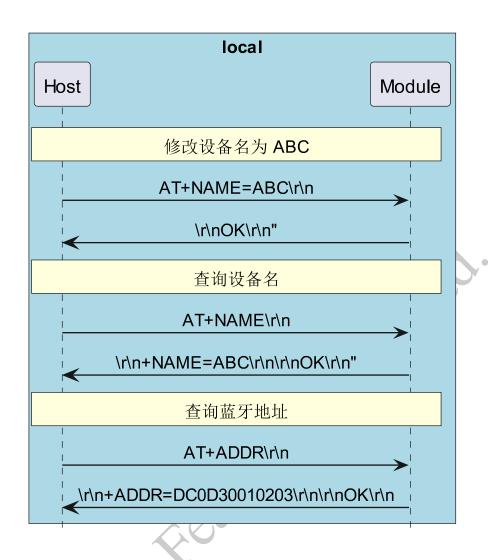
2 响应: >>OK

3. 建立 SPP 连接成功

在数据透传模式下,当蓝牙连接成功后,串口将无法收到事件响应指示,可通过 FSC-BT2064x 的 Pin22 连接状态指示引脚电平状态来判断当前连接状态,具体如下:

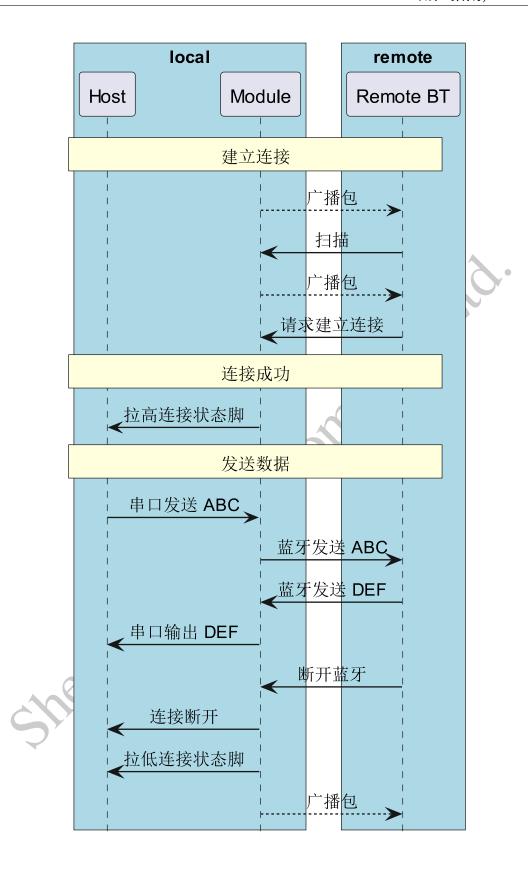
高电平(H):表示蓝牙已成功连接。

低电平(L):表示蓝牙未连接或连接已断开。

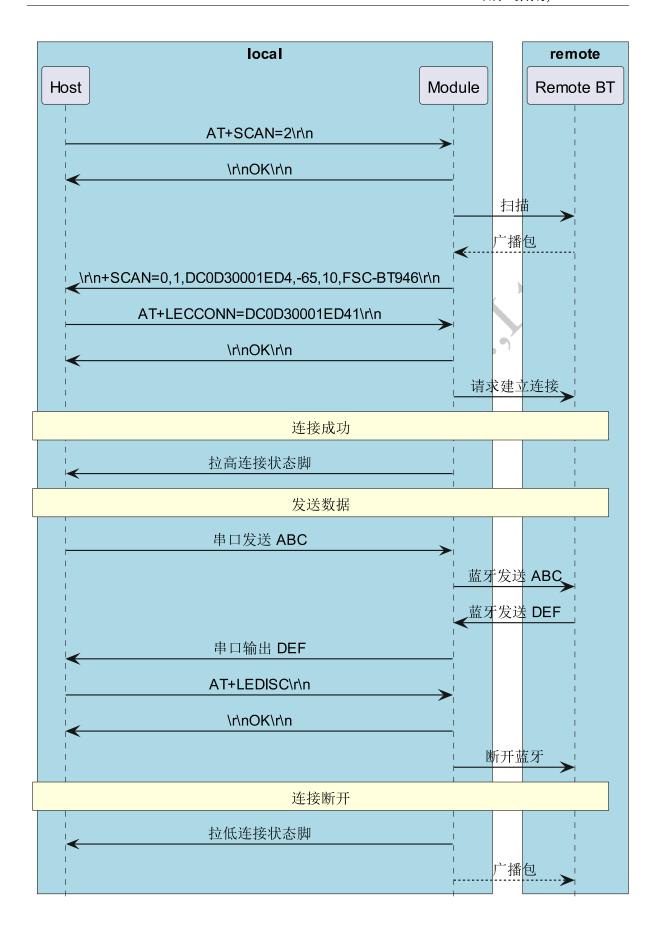

4. 发送数据

通用数传固件透传模式默认开启,SPP 建立连接成功后,即可直接发送数据,而不需要通过 AT 指令来发送数据。

6.2 查询/修改模组默认参数


模组在蓝牙没有连接的状态下,会将串口数据按照 AT 指令解析。主机可以对模组的默认参数进行查询和修改,下图展示了:

- 1. 修改设备名为 ABC
- 2. 查询设备名
- 3. 查询蓝牙地址


6.3 发送数据的流程

模组上电会持续向外发送广播数据,远端蓝牙(手机)可以通过搜索获取到广播包,并向模组发起连接请求。连接成功后模组会拉高连接状态脚通知主机蓝牙连接成功。主机可以通过蓝牙模组将数据发送给远端蓝牙,远端蓝牙也可以把数据发送给主机。

6.4 模组做主机连接远端设备

模组可以作为主设备去连接从设备,主机可以发送指令控制模组进行扫描连接和断开。下图展示了连接其他设备的过程:

固件升级

FSC-BT2064x 系列蓝牙音频模块已支持空中升级(OTA), 具体如下:

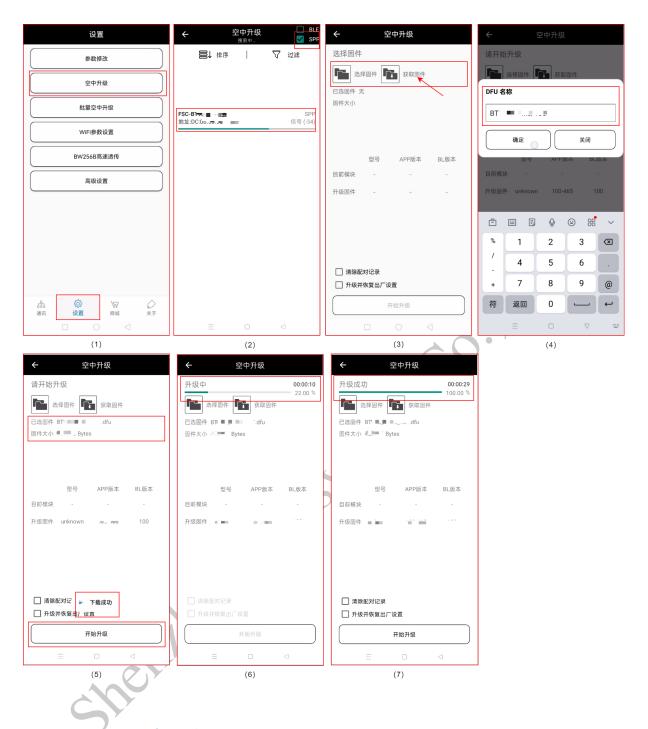
7.1 1. 空中升级

7.1.1 1.1 空中升级工具

• FeasyBlue (基于移动端 Android&iOS 系统应用)

7.1.2 1.2 空中升级操作指导

- 1. 运行 FeasyBlue App, 选择 设置 空中升级进入空中升级功能版块,进入后,将跳转至设备搜索界面,以选择要升级的蓝牙设备;
- 2. 搜索并选择需要升级的蓝牙设备,选中设备后将进入至 **加载固件**功能界面,以加载固件升级文件;
- 3. 加载固件升级文件有两种方式:
 - **选择固件**: 选择加载存储于手机本地空间的固件升级文件(固件升级文件由 飞易通提供):
 - 获取固件:通过输入 DFU 名称经网络从云服务器下载导入对应固件升级文件(DFU 名称由飞易通提供);
- 4. 加载固件文件成功后,点击 **开始升级**按钮,显示 **升级中**和升级进度,即进入升级模式成功,升级进行中;
- 5. 等待升级进度条完成,并显示 升级完成,即升级完成。


Warning:

- 1. 安装运行 FeasyBlue App 时,请允许 App 获取 **附近设备、位置信息、媒体和文件 访问**权限,否则会导致无法搜索附近蓝牙设备,和无法加载固件升级文件;
- 2. 如通过 **DFU** 名称来 获取固件来导入固件升级文件方式,需要注意手机需接入互联网,且确保 DFU 名称输入正确(区分大小写),否则可能会报错 **网络或文件错误**:
- 3. 升级过程中,不要断开电源。

7.1.3 1.3 空中升级操作图示

Shenthen Feasy com 注意:下面图示演示基于 Android 平台操作,其中涉及设备名称、参数及固件 DFU 名 称为演示示例,项目操作中请以实际为准。

7.1. 1. 空中升级 22

7.2 2. 升级常见问题

Q: 升级过程中出现异常,例如升级中断,升级完成后,但是模块没有升级成功,怎么办

A: 可尝试重上电, 重复升级操作, 确认是否可以正常进入升级模式, 如不能请联系飞易通技术团队。

常见问题汇总

8.1 1. 为什么手机上需要使用 APP 来进行蓝牙连接和通讯?

手机原生蓝牙功能仅支持通用场景,如音频传输、文件传输,部分蓝牙外围设备能通过 手机内置的设置程序连接上,如蓝牙外放器,蓝牙耳机,蓝牙键盘,蓝牙鼠标等,当蓝 牙外围设备无法被手机原生设置程序连接,例如蓝牙模块仅支持 SPP/GATT 协议,为 了连接这种模块,一般需要手机安装特定的手机应用,例如 FeasyBlue 应用。

8.2 2. iOS 手机如何获取蓝牙 MAC 地址?

iOS 系统出于安全考虑,在底层将蓝牙 MAC 地址变成了 UUID 发送给上层应用。所以 APP 无法获取到设备的 MAC 地址。

FSC-BT2064x 系列蓝牙模块默认会将 MAC 地址放在广播中,APP 可以通过下面的方法从广播包中获取 MAC 地址。

(continues on next page)

(continued from previous page)

```
return;
   }
}
- (Boolean) describeDictonary: (NSDictionary *) dict
   NSArray *keys;
   id key;
   keys = [dict allKeys];
   for(int i = 0; i < [keys count]; i++)</pre>
        key = [keys objectAtIndex:i];
        if([key isEqualToString:@"kCBAdvDataManufacturerData"])
            NSData *tempValue = [dict objectForKey:key];
            const Byte *tempByte = [tempValue bytes];
            if([tempValue length] == 6)
                // tempByte 后面参数是蓝牙地址
                return true
            }
        }else if([key isEqualToString:@"kCBAdvDataLocalName"])
            //there is name
            //NSString *szName = [dict objectForKey: key];
        }
   return false;
```

附录

[下载 PDF 版本]

Shenthen Fiedsycom Co. Ltd.